Sea-force Presentation Outiline

TSSE Knowledge Scheme

2002 155E Faculty and Team Members

•Faculty Members •Professor Harney •Professor Papoulias

Team Members

LT Luis Alvarez, USN
LT Jihed Boulares, Tunisia Navy
MAJ Keng-Shin Chong, RSN
LT Lynn Fodrea, USN
LT Brian Higgins, USCG
LT Seth Miller, USN

- LTJG Korkut Murat, Turkish Navy
- LT Koray Savur, Turkish Navy
- LT Matt Steeno, USN
- MAJ Chong-Ann Teh, RSN
- LT Dwight Warnock, USN

More information at www.nps.navy.mil/tsse/

Design Project Guidance

...to examine the concepts associated with "seabasing".

and

...produce a design for a ship to enable effective seabasing.

and

...explore the feasibility of building an LHA, MPF, and LMSR on a common hull form.

Project Overview

Design Constraints

- Access to major U.S. ports.
- Draft and height not greater than that of a CVN.
- Length less than 1000 ft.
- Displacement not greater than 100k LT
- Technology ready for shipboard installation in 2020.

Design Philosophy

Priority	Weighting Factors
1. Aviation Capability	High
2. Indefinite Sustainment	High
3. Operation Flexibility	High
4. Combat Sys. Defensive	High
5. Modularity	Medium
6. Manning Reduction	Medium
7. Speed	Medium
8. Maintainability	Medium
9. Cost	Low
10. Combat Sys. Offensive	Low
11. Appearance	Low

25 – 250 nm

200 April 10

Pre-position base or friendly port outside of theater of operation

Re-supply route

Sea Base

Total S

Sea-force Presentation Outline

Requirements Analysis

•Systems Engineering and Analysis Initial Requirements Document requests family of ships capable of Sea Basing and STOM TSSE System Engineering Methodology •"Top Down" analysis of IRD Traceability •Context •"Bottom Up" study of planned platforms •LHA(R), MPF(F), LMSR

Notional MEB Composition

	Number	Weight (LT)	Volume (ft ³)
Troops	18,000		
Vehicles	1,748	50,814	2,650,000
Aircrafts	204	2,118	14,400,000
Provisions (pallets)	4,800	2,544	304,000
Ordnance (pallets)	17,280	18,414	1,100,000
Fuel – GCE & ACE		30,714	1,345,000
Total for MEB	18,000 troops 1,748 vehicles 204 aircrafts 22,080 pallets	104,604	19,799,000
Total per Ship	3,000 troops 292 vehicles 34 aircrafts 3,680 pallets	17,434	3,300,000

Analysis of Alternatives

 A. Single Ship Design •One hull form Combat configured or logistics configured B. LHA/MPF with LMSR •LHA/MPF variant – troops, hospital, combat systems •LMSR variant – fuel, provisions, ammo C. MPF/LMSR with LHA •MPF/LMSR variant – troops, hospital, stores •LHA variant – combat systems

Conclusions

AoA Evaluation Data

□ A. Single Ship ■ B. LHA/MPF w LMSR □ C. MPF/LMSR w LHA

Sea-force Presentation Outline

What we Needed in a Hull Design

- Large cargo capacity
- Large flight deck
- Space for a well deck
- Durability/Survivability
- Propulsion efficiency

Future Sealift Ship Designs

- Global Security.org
- Nigel Gee and Associates Ltd.

HNS Tricon

- LOA.....312 ft
- Beam.....66 ft
- Draft....10 ft
- Displacement.....800 LT
- Speed.....20 kts Launched May 2000

אַרָעָרָן גערין צּזְנוּפּתפּצ ראַתכוּזָנוּדוּר חהיבפּר

- Wide open deck layouts
- Excellent Stability
- Protection from missile/Torpedo hits

Center Hull Characteristics

- Length.....990 ft
- Width.....106 ft
- Draft......42 ft
- Displacement...75,500 LT

Characteristics of Main Hull Form

- Flat transom to facilitate a well deck
- Raised keel in stern to provide space for propulsors
- High length-to-beam ratio
- Wave piercing bow

ealisiteiarrai9 IIII teuuriju

- Length.....550 ft
- Width.....20 ft
- Draft......32 ft
- Displacement...6000 LT

Superstructure Description

Floodable Length Calculations

Led to location of watertight bulkheads and spaces

Weight Breakdown

CATEGORY	WEIGHT (Long Tons)
Structure	39996
Vehicles	10624
LCAC & LCUs	1792
Aircraft	442
Supplies	3493
Personnel	267
Combat Systems	1215
Propulsion/Electrical	12500
Fuel	13119
Water	4000
TOTAL	87448

Structural Calculations: Longitudinal Stress

10,050 psi.....maximum predicted stress
15,000 psi.....allowable stress

Rolling Galeulations

 Based on the same analysis done at MIT for the LHA-R design.

 Predicted snap roll will be countered using anti-roll fins

Below the Waterline

Seedui Deek

First Deck

Main Deek

D. D. B. R. K

Marine Corps berthing

Flight Deck

Mall Dack

Side Well Deseription

Rail system transfers vehicles / containers between
 Sea Force and LCUs.
Sea-force Presentation Outline

Flight Deck

Description

• Aircraft

Minimize Manning

Hight Deck

- Triple Tram Line
- Length: 770 ft
- Width: 300 ft
- Area: 230,000 ft²
- 16 A/C spots
- Centerline Runway
- 3 A/C Elevators

Flight Deck Sensor Grid

<u>jirtətil</u>

- 16 MV-22
- 4 Heavy Lift Aircraft
- 6 JSF
- 4 UH-1Y
- 4 AH-1Z
- 4 SH-60F

Manning Reduction

Technologies

- Robotics
- Omnidirectional Vehicles
- Advance Weapons
 Elevator
- Enhanced functions
 - Firefighting
 - Towing
 - Fueling
 - Aircraft loading

Sea-force Presentation Outline

Propulsion

- Resistance Calculations and Power Req.
- Alternatives for Propulsion Plant
- Prime Mover Selection
- Comparison of Gas Turbines
- Propulsor Selection
- Propulsion Motor Selection
- Fuel Consumption comparison
- Lay out plan

Alternatives for Propulsion Plant

- Conventional steam plant
- Nuclear steam plant
- Diesel engines
- Fuel cells
- Gas turbines

24 Hour Ship Electric Load=>15 Mw (~20 000 Hp)

Speed versus Power Diagram

SPEED VS POWER

Lime Works 261661101

 Gas turbine alternatives •Mt 30 TRENT •ICR w21 •LM1600 •LM2500 •LM2500(+) •LM6000 Trade off Studies •LM1600 and LM2500(+) •LM2500(+) and LM6000 •Final Decision: 3 LM6000 and 1 LM2500(+)

Traile off Study Beimeen LM6000 and LM2600(-+)

Fuel Consumption Calculations for Different Speeds

Propulsor Cindices

- Water jets and hydro drive
- Conventional propeller
- Pods

*The most feasible propulsor is electrical pods due to weight, volume, location flexibility and maneuverability.

Propulsion Motor Selection

- Conventional motors
- HTS Superconducting AC synchronous motors
- DC Superconducting Homopolar motors

SELECTION: 40 MW HTS SUPERCONDUCTING AC MOTOR WITH THE PROMISING TECHNOLOGY

Schematic

Sea-force Presentation Outiline

Introduction

Requirements & Alternatives

Hull

Flight Deck Conclusions

Total Ship Evaluation

> Combat Systems

Logistics

Propulsion

Electrical

Installed Electrical Power Total installed electrical power 159 MW •3 LM6000 \rightarrow 43MW each •1 LM2500+ → 30MW Electrical load •At a speed of 30 knots 15MW of power is available for ship's service. •Up to 120 MW available at reduced speed of 20knots for FEL and rail gun operations.

•Fly-wheel and capacitors are used to store energy for FEL and rail gun.

Electrical Distribution

- IPS architecture
 - Ship divided to 15 zones
 - Combined AC and DC zonal electrical distribution system
 - 4 buses (2) 4160V AC and (2) 1100V DC
 - 2 above the water line and 2 below the waterline
 - 2 in the port and 2 in the starboard.

EM: electric motor podded PM: prime movers Z1:1LM6000&1LM2500+ Z5&Z11 :1LM6000 G: generator 4160VAC PCM:power converter module4160VAC/1100VDC(transformer +rectifier) PMM:propulsion motor module (transformer + cycloconverter) EM :propulsion electric motor

IPS Advantages

- Reduces cost, weight, fuel consumption and manning
- Increases survivability
- Equipment installed and tested prior to zone interconnection
- Faster and simpler fault detection and zone isolation
- Only main buses cross watertight compartment bulkheads

Sea-Force Presentation Outline

Derived Logistics Requirements

Distribution and logistics hub

Interface with existing and future supply assets

 Increase inter & intra ship material handling efficiency in a robust environment

 Leverage on technology & automation to meet reduce manning requirements for logistical functions

Suskinment Beilnitements.

•Loading Requirement Per Ship : First 30 Days of Sustainment of a MEB

Commodity	TEUs	Pallets per ship	Total Pallets MEB
Provisions	40	800	4800
Ordnance	144	2880	17280

Commodity	Weight per Ship (LT)	Volume per Ship (ft³)
Provisions	425	51200
Ordnance	3069	184320
Total	~3500	235520

•Fuel Requirements Per Ship for 30 Day Sustainment : 2,103,300 gallons(7835LT) for Surfrep assets : 400,000 gallons for GCE(1360LT)

•Subsequent Transfer Requirements : 15 TEUs per day per ship (from day 30 onwards)

Intra/Inter-Ship Material Handling Concept

Motion Compensated Crane

Able to recess into the warehouse
Minimal obstruction to flight operations
Motion compensated – handle TEU loads @ SS 4

Mayazme Layoui

•30 % workload reduction over current systems.
• 20 % weight reduction.
• 20 % power consumption reduction.

Vertical/Horizontal LIM Conveyor Belt (Source: ONR)

Mareindise Layou

• Total warehouse volume : 960,750 ft³

Sea-force Presentation Outline

Combat Systems Design Requirements

Basic Ship Self-Defense in a Littoral Environment

Major threats include: High-density missile and small boat attacks Floating, Bottom and Surface Moored Mines Coastal Water Submarines

Robust C4ISR Capability

Support for MEB/MEU forces afloat and ashore Enables ship to function as a Joint Command Center in theater Compatible with current as well as legacy systems

Overall Placities

The combat systems and C4ISR suite will be fully integrated to include both organic and non-organic sensor inputs for power projection and ship self-defense to better support Network Centric Warfare

Combat Systems Integration

- Year 2020 Generation Cooperative Engagement Capability (CEC)
- Year 2020 Generation Ship Self-Defense System (SSDS)

Robust C4ISR Capabilities

- Ability to Integrate Battle Group Assets using systems such as Year 2020 CEC, GCCS-M, NTCSS, NAVSSI, and the Expeditionary Sensor Grid (ESG)
- Ability to act as Joint Command Center in Theater providing a full range of communication and information gathering equipment

Layered Self-Defense

Naval Surface Fire Support

The ship will be capable of providing Fire Support for the embarked Expeditionary Forces

Electromagnetic Rail Gun

 Can provide fire support against targets such as enemy personnel and tanks at ranges up to 400 NM

• Four mounts operated NMT two at a time (port or starboard) due to power requirements

Embarked Aircraft

• Joint Strike Fighter could be utilized

Battle Group Assets

• Escort Ships and Aircraft

erisirisW r<mark>ill</mark> Srozne<mark>2</mark>

The Air Warfare suite will consist of sensors and weapons optimized for defense against high density missile attacks

Year 2020 Generation Digital Array Radar (Volume Search Radar)

- Provides High Volume Air Tracking and Fire Control Capability
- Range: Up to 250 km
- 4 Array Panels Provide 360 Degree Coverage

Year 2020 Generation Infrared Search and Track / Electro-Optical Systems

- Detects anti-ship cruise missile thermal heat plumes or signatures
- Range: Minimum of 10 km
- Four Sensors with 360 Degree Coverage

ersinsW t<mark>EL</mark> ZuduseW

Free Electron Laser

- Counters Magazine Saturation Attacks
- Range: Up to 10 km
- 5 Beam Directors (2 Port, 2 Starboard and 1 Astern)

Year 2020 Generation SEA RAM

- Counters Temporal Saturation Attacks
- Range: Up to 4 km
- 3 Mounts (Port, Starboard and Bow)

Embarked Aircraft/Other Battle Group Assets

• Joint Strike Fighters, Year 2020 Generation Standard Missiles

Mine Interdiction Warfare

The Mine Interdiction Suite will be capable of only Basic Mine Detection and Avoidance

Unmanned Undersea Vehicles

- Perform remote mine detection, reconnaissance and clearance operations
- Systems for employment include (Year 2020 Generation): Long Term Mine Reconnaissance System (LMRS), Remote Mine Hunting System (RMS), Enhanced Mine Neutralization System (EMNS)

Aircraft Mounted Mine Detection and Removal Equipment

- Equipment is easily mounted into embarked assets such as the SH-60 or MV-22 configured aircraft
- Systems for employment include (Year 2020 Generation): Airborne Laser Mine Detection System (ALMDS), Rapid Airborne Mine Clearance Systems (RAMICS)

Surface Warfare Storace

The ship will be configured to defend primarily against small boat attacks

Year 2020 Generation SPS-73 Surface Search/Navigation Radar

• Primary Surface Search/Navigation Radar

Year 2020 Generation Digital Array Radar

Primary Fire Control Radar

Year 2020 Generation Electro-Optical Systems

- Infrared Search and Track/FLIR and/or TISS System
- Primary/Secondary Fire Control Systems

Suriace Mariare Weapons

Year 2020 Generation SEA RAM

- Current System is air defense only and would require a surface mode similar to CIWS Block 1B
- Range: 4 km utilizing four mounts (Two Fwd and Two Aft)

Electromagnetic Rail Gun

- Primarily for Targeting small to medium sized vessels
- Range: 10 km utilizing four mounts NMT two at a time (Two Port and Two Stbd)

Free Electron Laser

- Targeting of small boats only
- Range: 10 km utilizing any 3 of 5 beam directors simultaneously (Two Port, Two Stbd and 1 Astern)

Battle Group Assets / Embarked Aircraft (i.e. JSF)

Undersea Wariare Sensors/Weapons

The Undersea Warfare Suite will be limited to basic Undersea Warfare capabilities using embarked Air, Undersea Vehicle and other Battle Group Assets

Utilize Unmanned Undersea Vehicles (UUV's) and dipping sonar from embarked SH-60F or MV-22 configured aircraft.

Utilize year 2020 generation MK50 torpedoes launched from SH-60 or MV-22 configured aircraft.

Other Battle Group assets will be required for any other operation than basic selfdefense (i.e. ships, aircraft and submarines).

Electronic Warfare

The Electronic Warfare suite will integrate a full array of Electronic Warfare capabilities into its Combat Systems Suite

Year 2020 Generation Integrated Electronic Warfare System

 System will incorporate Year 2020 Generation Electronic Support (ES), Electronic Attack (EA), an Infrared Search and Track System (IRST), as well as an Infrared Jamming and decoy system.

Provide Active and Passive Electronic Warfare capabilities similar to AN/SLQ-32(V).

Provide decoy system such as Mk 53 NULKA Decoy Launching System

Sea-force Presentation Outline

Introduction

Requirements & Alternatives

Hull

Flight

Deck

Conclusions

Total Ship Evaluation

> Combat Systems

Logistics

Propulsion

Electrical

Total Ship Systems Engineering

Total Ship Evaluation Areas

- Operational Functionality and Flexibility
- Modularity
- Survivability
- Manning
- Damage Control
- Cost

Dperailonal functionality/flexibility

- Access/Reroute/Resupply Methods

 Well Deck
 Flight Deck
 LCU Decks
 Crane
- Layout
 - Berthing for GCE near Med/Hospital
 - Joint Support spaces co-located:
 - CO/Flag/CS/C4I and Bridge

Uperaiional functionality/flexibility

Ports of Access
Norfolk
San Diego
Everett
Rota
Ports Requiring Access

•Blount Island

Modularity

•Berthing Modules •80 total •30 Navy Ofcr/Enl •50 USMC Ofcr/Enl Medical/Third echelon afloat care 500 bed hospital •6 operating rooms •1 pharmacy.

Modularity

- Space Conversion from Combatant to Supply Configuration
 - C4I/CS/Weapons
 - Retain SEARAM, DAR, SPS-73, Comms, Flight Deck control, and Countermeasures
 - Total Converted Volume 201,000 ft³
 - Berthing All USMC and a percentage of Navy
 - Total Converted Volume 1,540,000 ft³
 - Hospital/Medical 219,000 ft³
- Available for containers/pallets/ammo ~ 5.7 million ft^3
 - Includes Half the Hangar, Vehicle Decks, Warehouse

Supply Configuration

Weight limited vice volume limited design:
More room for containers than weight allowed
Allows for 25 days of sustainment load

Areas Reduced–

•Maintenance (IMA), Food Preparation, Aviation, Admin, Flight Deck, and Engineering

Survivability

 Signature Reduction Exhausts expended between hulls and water misted Carbon Composite covering steel hull structure Radar absorbent paint Redundant systems/Distributed C4I •Elevator Combat Systems Weapons and Sensors CBR Protective Measures

Manning levels determined based on
Watch Stations - 50
Maintenance - 146
Logistics Operations - 242

Manning - Summary

•Manning reduction – Combat Variant •35% (based on LHD) •50% (based on displacement of US Warship) •Total Ship Manning (Combat Ship) - 724 •51 Officers, 41 CPOs and 632 Enlisted •Total Ship Manning (Supply Ship) – 145 •Civilian and Military Mix •30 Civilians, 115 Military

Low Maintenance Design

- Conditioned Based Maintenance
- Integrated Electric Drive
- Electrical Distribution System Power Electronic Building Blocks
- SWAN
 - Automated Identification Technology

Damaya Control

 Integrated into the shipboard SWAN Advance Real-Time Sensing •Pre-emptive ("flinch") capability Intelligent distributed control architecture – robust DC-**ARM Supervisory** Control System Display sensory information Isolate/recover zones as a result of attack Optimized the distribution and separation of redundant vital systems and control stations

Fire Suppression Systems Unboard

Compartment	FM 200	CO ₂	Water Mist	AFFF
Machinery spaces			Х	Х
Engine enclosures		Х		
Magazine areas				Х
Electronics equipment rooms	Х			
Hangar			Х	Х
Vehicle Deck			Х	Х
Well Deck				Х
Flight deck				Х
CIC	Х			
Bridge	Х			
Accommodations	Х			
Kitchens&Galley	Х			
Offices	Х			
Passageways	Х			
Paint lockers		Х		
Pump rooms		Х		

The Cosi Facio?

- Total Acquisition Cost Estimate
 - \$3.5 Billion
 - \$1.32 Material
 - \$1.66 Labor
- Total System Cost Estimate
 \$5.8 Billion
- Cost Breakdown by Percent of Total Cost:
 - Hull 10% of Material Cost
 - Propulsion/Electrical 17% of Material Cost
 - Combat Systems 27.5% of Material Cost
 - Air Wing 28.7% of Total System Cost

Total Ship Systems Engineering

Areas Requiring further Analysis

LCU loading and storage methods.

• Conversion to JCC ship.

Implementation of a break water area between the main and side hulls

Conclusions

•2nd Iteration Considerations
•Port Accessibility.
•Selective offload of vehicles made more efficient.
•Further analysis of supply variant loading.

Conclusions

- Key enabler to successful implementation of sea basing concept.
 - Large flight deck to support STOM.
 - Large internal volume for logistics support and selective offload.
 - Supply configured variant capable of supporting troops ashore without transfer to ships in the sea base.
 - Capable of force reconstitution.

