TSSE Knowledge Scheme

Capstone Design Project
Realistic, Team-based Application

TSSE Courses
Systems Engineering Principles and Process Integration Processes and Techniques

MS Degree (ME/Physics/ECE) — Foundation Engineering Understanding of Major Elements
2002 TSSE Faculty and Team Members

• Faculty Members
 • Professor Harney
 • Professor Papoulias

• Team Members
 • LT Luis Alvarez, USN
 • LT Jihed Boularas, Tunisia Navy
 • MAJ Keng-Shin Chong, RSN
 • LT Lynn Fodrea, USN
 • LT Brian Higgins, USCG
 • LT Seth Miller, USN
 • LTJG Korkut Murat, Turkish Navy
 • LT Koray Savur, Turkish Navy
 • LT Matt Steeno, USN
 • MAJ Chong-Ann Teh, RSN
 • LT Dwight Warnock, USN

More information at www.nps.navy.mil/tsse/
Design Project Guidance

...to examine the concepts associated with “seabasing”.

and

...produce a design for a ship to enable effective seabasing.

and

...explore the feasibility of building an LHA, MPF, and LMSR on a common hull form.
Project Overview

Phase I
- Review IRD
- 3 Ship Study

Phase II
- Option A
- Option B
- Option C
- Concept Exploration

Phase III
- Conceptual Design
Design Constraints

- Access to major U.S. ports.
- Draft and height not greater than that of a CVN.
- Length less than 1000 ft.
- Displacement not greater than 100k LT
Design Philosophy

<table>
<thead>
<tr>
<th>Priority</th>
<th>Weighting Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aviation Capability</td>
<td>High</td>
</tr>
<tr>
<td>2. Indefinite Sustainment</td>
<td>High</td>
</tr>
<tr>
<td>3. Operation Flexibility</td>
<td>High</td>
</tr>
<tr>
<td>4. Combat Sys. Defensive</td>
<td>High</td>
</tr>
<tr>
<td>5. Modularity</td>
<td>Medium</td>
</tr>
<tr>
<td>6. Manning Reduction</td>
<td>Medium</td>
</tr>
<tr>
<td>7. Speed</td>
<td>Medium</td>
</tr>
<tr>
<td>8. Maintainability</td>
<td>Medium</td>
</tr>
<tr>
<td>9. Cost</td>
<td>Low</td>
</tr>
<tr>
<td>10. Combat Sys. Offensive</td>
<td>Low</td>
</tr>
<tr>
<td>11. Appearance</td>
<td>Low</td>
</tr>
</tbody>
</table>
Requirements Analysis

• Systems Engineering and Analysis
 • Initial Requirements Document requests family of ships capable of Sea Basing and STOM

• TSSE System Engineering Methodology
 • “Top Down” analysis of IRD
 • Traceability
 • Context
 • “Bottom Up” study of planned platforms
 • LHA(R), MPF(F), LMSR
Notional MEB Composition

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Weight (LT)</th>
<th>Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troops</td>
<td>18,000</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Vehicles</td>
<td>1,748</td>
<td>50,814</td>
<td>2,650,000</td>
</tr>
<tr>
<td>Aircrafts</td>
<td>204</td>
<td>2,118</td>
<td>14,400,000</td>
</tr>
<tr>
<td>Provisions (pallets)</td>
<td>4,800</td>
<td>2,544</td>
<td>304,000</td>
</tr>
<tr>
<td>Ordnance (pallets)</td>
<td>17,280</td>
<td>18,414</td>
<td>1,100,000</td>
</tr>
<tr>
<td>Fuel – GCE & ACE</td>
<td>--</td>
<td>30,714</td>
<td>1,345,000</td>
</tr>
</tbody>
</table>

Total for MEB
- 18,000 troops
- 1,748 vehicles
- 204 aircrafts
- 22,080 pallets

Total per Ship
- 3,000 troops
- 292 vehicles
- 34 aircrafts
- 3,680 pallets

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Weight (LT)</th>
<th>Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total for MEB</td>
<td></td>
<td>104,604</td>
<td>19,799,000</td>
</tr>
<tr>
<td>Total per Ship</td>
<td></td>
<td>17,434</td>
<td>3,300,000</td>
</tr>
</tbody>
</table>
Analysis of Alternatives

A. Single Ship Design
 • One hull form
 • Combat configured or logistics configured

B. LHA/MPF with LMSR
 • LHA/MPF variant – troops, hospital, combat systems
 • LMSR variant – fuel, provisions, ammo

C. MPF/LMSR with LHA
 • MPF/LMSR variant – troops, hospital, stores
 • LHA variant – combat systems
Conclusions

AoA Evaluation Data

- Amphibious Warfare
- C4ISR
- FSO
- Logistics
- Operational Concept
- Total Score

Legend:
- A. Single Ship
- B. LHA/MPF w LMSR
- C. MPF/LMSR w LHA
Sea-Force Presentation Outline

- Introduction
- Requirements & Alternatives
- Hull
- Flight Deck
- Propulsion
- Electrical
- Total Ship Evaluation
- Combat Systems
- Logistics
- Conclusions
What we Needed in a Hull Design

- Large cargo capacity
- Large flight deck
- Space for a well deck
- Durability/Survivability
- Propulsion efficiency
Future Sealift Ship Designs

- Global Security.org
- Nigel Gee and Associates Ltd.
HMS Triton

- LOA........312 ft
- Beam......66 ft
- Draft.....10 ft
- Displacement.....800 LT
- Speed......20 kts
- Launched May 2000
Additional Benefits from Tri Hull Design

- Wide open deck layouts
- Excellent Stability
- Protection from missile/Torpedo hits
Center Hull Characteristics

- Length: 990 ft
- Width: 106 ft
- Draft: 42 ft
- Displacement: 75,500 LT
Characteristics of Main Hull Form

- Flat transom to facilitate a well deck
- Raised keel in stern to provide space for propulsors
- High length-to-beam ratio
- Wave piercing bow
Outrigger Hull Characteristics

- Length 550 ft
- Width 20 ft
- Draft 32 ft
- Displacement ... 6000 LT
Superstructure Description
Floodable Length Calculations

- Led to location of watertight bulkheads and spaces
Weight Breakdown

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>WEIGHT (Long Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>39996</td>
</tr>
<tr>
<td>Vehicles</td>
<td>10624</td>
</tr>
<tr>
<td>LCAC & LCUs</td>
<td>1792</td>
</tr>
<tr>
<td>Aircraft</td>
<td>442</td>
</tr>
<tr>
<td>Supplies</td>
<td>3493</td>
</tr>
<tr>
<td>Personnel</td>
<td>267</td>
</tr>
<tr>
<td>Combat Systems</td>
<td>1215</td>
</tr>
<tr>
<td>Propulsion/Electrical</td>
<td>12500</td>
</tr>
<tr>
<td>Fuel</td>
<td>13119</td>
</tr>
<tr>
<td>Water</td>
<td>4000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>87448</td>
</tr>
</tbody>
</table>
Structural Calculations: Longitudinal Stress

- 10,050 psi maximum predicted stress
- 15,000 psi allowable stress
Rolling Calculations

- Based on the same analysis done at MIT for the LHA-R design.

- Predicted snap roll will be countered using anti-roll fins
Below the Waterline

- Pod machinery room
- Magazine
- Enginerooms
Second Deck

- Vehicle deck
- Well deck
- Berthing
First Deck

Machinery/Electrical shops

Vehicle deck
02 Deck

Marine Corps berthing
03 Deck

Marine Corps berthing / hospital

Command / Control spaces
Side Well Description

- Rail system transfers vehicles / containers between Sea Force and LCUs.
Flight Deck

- Description
- Aircraft
- Minimize Manning
Flight Deck

- Triple Tram Line
- Length: 770 ft
- Width: 300 ft
- Area: 230,000 ft²
- 16 A/C spots
- Centerline Runway
- 3 A/C Elevators
Flight Deck Sensor Grid
Aircraft

- 16 MV-22
- 4 Heavy Lift Aircraft
- 6 JSF
- 4 UH-1Y
- 4 AH-1Z
- 4 SH-60F
Manning Reduction

- Technologies
 - Robotics
 - Omnidirectional Vehicles
 - Advance Weapons Elevator

- Enhanced functions
 - Firefighting
 - Towing
 - Fueling
 - Aircraft loading
Propulsion

- Resistance Calculations and Power Req.
- Alternatives for Propulsion Plant
- Prime Mover Selection
- Comparison of Gas Turbines
- Propulsor Selection
- Propulsion Motor Selection
- Fuel Consumption comparison
- Lay out plan
Alternatives for Propulsion Plant

- Conventional steam plant
- Nuclear steam plant
- Diesel engines
- Fuel cells
- Gas turbines
Speed versus Power Diagram

24 Hour Ship Electric Load => 15 Mw (~20 000 Hp)
Prime Mover Selection

• Gas turbine alternatives
 • Mt 30 TRENT
 • ICR w21
 • LM1600
 • LM2500
 • LM2500(+)
 • LM6000

• Trade off Studies
 • LM1600 and LM2500(+)
 • LM2500(+) and LM6000

• Final Decision: 3 LM6000 and 1 LM2500(+)

Total Ship Systems Engineering
Trade off Study Between LM6000 and LM2500(+)

speed vs. SFC(elc+prop)

- LM2500+
- LM6000

Total Ship Systems Engineering
Fuel Consumption Calculations for Different Speeds

FUEL CONS KLT (90% 14 KNOTS 10% 27 KNOTS 30 DAYS 5 KNOTS)

- 4 LM6000
- 3 LM 6000
- 5 LM 2500+

MAX SPEED (KNOTS)

- 4 LM6000
- 3 LM 6000
- 1 LM2500+
- 5 LM 2500+
Propulsor Choices

- Water jets and hydro drive
- Conventional propeller
- Pods

*The most feasible propulsor is electrical pods due to weight, volume, location flexibility and maneuverability.
Propulsion Motor Selection

- Conventional motors
- HTS Superconducting AC synchronous motors
- DC Superconducting Homopolar motors

SELECTION: 40 MW HTS SUPERCONDUCTING AC MOTOR WITH THE PROMISING TECHNOLOGY
Sea-Force Presentation Outline

Introduction
Requirements & Alternatives
Hull
Flight Deck
Propulsion
Electrical

Conclusions
Total Ship Evaluation
Combat Systems
Logistics

Total Ship Systems Engineering
Installed Electrical Power

- Total installed electrical power 159 MW
 - 3 LM6000 → 43 MW each
 - 1 LM2500+ → 30 MW

- Electrical load
 - At a speed of 30 knots 15 MW of power is available for ship’s service.
 - Up to 120 MW available at reduced speed of 20 knots for FEL and rail gun operations.
 - Fly-wheel and capacitors are used to store energy for FEL and rail gun.
Electrical Distribution

- IPS architecture
 - Ship divided to **15 zones**
 - Combined AC and DC zonal electrical distribution system
- **4 buses** (2) 4160V AC and (2) 1100V DC
 - 2 above the water line and 2 below the waterline
 - 2 in the port and 2 in the starboard.
Port bus 4160 V AC
Port bus 1100 V DC

- SSCM: dc-dc converter
 (2 per zone 1 providing power the other ready for backup)
- SSIM: dc-ac inverter

Circuit breakers
Diode auctioneering
EM: electric motor podded
PM: prime movers
PCM: power converter
PMM: propulsion motor module (transformer + cycloconverter)
G: generator 4160VAC
EM: propulsion electric motor

Z1: 1LM6000 & 1LM2500+
Z5 & *Z11*: 1LM6000

4160VAC
1100/1000VDC

PCM:
module 4160VAC/1100VDC (transformer + rectifier)
IPS Advantages

- Reduces cost, weight, fuel consumption and manning
- Increases survivability
- Equipment installed and tested prior to zone interconnection
- Faster and simpler fault detection and zone isolation
- Only main buses cross watertight compartment bulkheads
Derived Logistics Requirements

• Distribution and logistics hub

• Interface with existing and future supply assets

• Increase inter & intra ship material handling efficiency in a robust environment

• Leverage on technology & automation to meet reduce manning requirements for logistical functions
Sustainment Requirements

• Loading Requirement Per Ship: First 30 Days of Sustainment of a MEB

<table>
<thead>
<tr>
<th>Commodity</th>
<th>TEUs</th>
<th>Pallets per ship</th>
<th>Total Pallets MEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisions</td>
<td>40</td>
<td>800</td>
<td>4800</td>
</tr>
<tr>
<td>Ordnance</td>
<td>144</td>
<td>2880</td>
<td>17280</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Weight per Ship (LT)</th>
<th>Volume per Ship (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisions</td>
<td>425</td>
<td>51200</td>
</tr>
<tr>
<td>Ordnance</td>
<td>3069</td>
<td>184320</td>
</tr>
<tr>
<td>Total</td>
<td>~3500</td>
<td>235520</td>
</tr>
</tbody>
</table>

• Fuel Requirements Per Ship: 2,103,300 gallons (7835LT) for Surfrep assets for 30 Day Sustainment
• Fuel Requirements Per Ship: 400,000 gallons for GCE (1360LT)

• Subsequent Transfer Requirements: 15 TEUs per day per ship (from day 30 onwards)
Intra/Inter-Ship Material Handling Concept

Resupply

- **AMMO**
- **CARGO**
- **LIQUID**

Modes Of Transfer

- VERTREP
- SURFREP
- CONREP

DESTINATION - Sea Force

• Multi paths- unfettered access to distribution capability

Load/Unload

- Flight Deck Spots
- Well Deck Spot
- Along Side Spots - Crane/Ramp
- High Lines

Automated Warehouse

- Weapons Elevators
- Linear Electric Drive Conveyor
- Cargo/AC Elevators

Or Ship to be supplied

Ref: Sea-Base Sustainment Conference 02 NSWC Port Hueneme Division
Motion Compensated Crane

- Able to recess into the warehouse
- Minimal obstruction to flight operations
- Motion compensated – handle TEU loads @ SS 4

Adapted from study on “Cargo Transfer to MOB” by NIST submitted to ONR in 1998
Magazines 2 and 4 holds a total of 1100 pallets.

Magazines 3 and 4 for a total of 956 pallets.
Hybrid Linear Electric Drive

• 30 % workload reduction over current systems.
• 20 % weight reduction.
• 20 % power consumption reduction.

Vertical/Horizontal LIM Conveyor Belt (Source: ONR)
• Total warehouse volume : 960,750 ft3
Combat Systems Design Requirements

Basic Ship Self-Defense in a Littoral Environment

Major threats include:
- High-density missile and small boat attacks
- Floating, Bottom and Surface Moored Mines
- Coastal Water Submarines

Robust C4ISR Capability

Support for MEB/MEU forces afloat and ashore
Enables ship to function as a Joint Command Center in theater
Compatible with current as well as legacy systems
Overall Architecture

The combat systems and C4ISR suite will be fully integrated to include both organic and non-organic sensor inputs for power projection and ship self-defense to better support Network Centric Warfare.

Combat Systems Integration
- Year 2020 Generation Cooperative Engagement Capability (CEC)
- Year 2020 Generation Ship Self-Defense System (SSDS)

Robust C4ISR Capabilities
- Ability to Integrate Battle Group Assets using systems such as Year 2020 CEC, GCCS-M, NTCSS, NAVSSI, and the Expeditionary Sensor Grid (ESG)
- Ability to act as Joint Command Center in Theater providing a full range of communication and information gathering equipment
Layered Self-Defense

- **JSF/OTHER BATTLE GROUP ASSETS**: 10-100+ km
- **FEL/RAIL GUN**: 4-10 km
- **FEL/SEA RAM/RAIL GUN**: 0-4 km
Naval Surface Fire Support

The ship will be capable of providing Fire Support for the embarked Expeditionary Forces

Electromagnetic Rail Gun
- Can provide fire support against targets such as enemy personnel and tanks at ranges up to 400 NM
- Four mounts operated NMT two at a time (port or starboard) due to power requirements

Embarked Aircraft
- Joint Strike Fighter could be utilized

Battle Group Assets
- Escort Ships and Aircraft
The Air Warfare suite will consist of sensors and weapons optimized for defense against high density missile attacks.

Year 2020 Generation Digital Array Radar (Volume Search Radar)
- Provides High Volume Air Tracking and Fire Control Capability
- Range: Up to 250 km
- 4 Array Panels Provide 360 Degree Coverage

Year 2020 Generation Infrared Search and Track / Electro-Optical Systems
- Detects anti-ship cruise missile thermal heat plumes or signatures
- Range: Minimum of 10 km
- Four Sensors with 360 Degree Coverage
Air Warfare Weapons

Free Electron Laser
- Counters Magazine Saturation Attacks
- Range: Up to 10 km
- 5 Beam Directors (2 Port, 2 Starboard and 1 Astern)

Year 2020 Generation SEA RAM
- Counters Temporal Saturation Attacks
- Range: Up to 4 km
- 3 Mounts (Port, Starboard and Bow)

Embarked Aircraft/Other Battle Group Assets
- Joint Strike Fighters, Year 2020 Generation Standard Missiles
Mine Interdiction Warfare

The Mine Interdiction Suite will be capable of only Basic Mine Detection and Avoidance

Unmanned Undersea Vehicles

- Perform remote mine detection, reconnaissance and clearance operations
- Systems for employment include (Year 2020 Generation): Long Term Mine Reconnaissance System (LMRS), Remote Mine Hunting System (RMS), Enhanced Mine Neutralization System (EMNS)

Aircraft Mounted Mine Detection and Removal Equipment

- Equipment is easily mounted into embarked assets such as the SH-60 or MV-22 configured aircraft
- Systems for employment include (Year 2020 Generation): Airborne Laser Mine Detection System (ALMDS), Rapid Airborne Mine Clearance Systems (RAMICS)
Surface Warfare
Sensors

The ship will be configured to defend primarily against small boat attacks

Year 2020 Generation SPS-73 Surface Search/Navigation Radar
 • Primary Surface Search/Navigation Radar

Year 2020 Generation Digital Array Radar
 • Primary Fire Control Radar

Year 2020 Generation Electro-Optical Systems
 • Infrared Search and Track/FLIR and/or TISS System
 • Primary/Secondary Fire Control Systems
Surface Warfare
Weapons

Year 2020 Generation SEA RAM
- Current System is air defense only and would require a surface mode similar to CIWS Block 1B
- Range: 4 km utilizing four mounts (Two Fwd and Two Aft)

Electromagnetic Rail Gun
- Primarily for Targeting small to medium sized vessels
- Range: 10 km utilizing four mounts NMT two at a time (Two Port and Two Stbd)

Free Electron Laser
- Targeting of small boats only
- Range: 10 km utilizing any 3 of 5 beam directors simultaneously (Two Port, Two Stbd and 1 Astern)

Battle Group Assets / Embarked Aircraft (i.e. JSF)
The Undersea Warfare Suite will be limited to basic Undersea Warfare capabilities using embarked Air, Undersea Vehicle and other Battle Group Assets

Utilize Unmanned Undersea Vehicles (UUV’s) and dipping sonar from embarked SH-60F or MV-22 configured aircraft.

Utilize year 2020 generation MK50 torpedoes launched from SH-60 or MV-22 configured aircraft.

Other Battle Group assets will be required for any other operation than basic self-defense (i.e. ships, aircraft and submarines).
Electronic Warfare

The Electronic Warfare suite will integrate a full array of Electronic Warfare capabilities into its Combat Systems Suite

Year 2020 Generation Integrated Electronic Warfare System

- System will incorporate Year 2020 Generation Electronic Support (ES), Electronic Attack (EA), an Infrared Search and Track System (IRST), as well as an Infrared Jamming and decoy system.

Provide Active and Passive Electronic Warfare capabilities similar to AN/SLQ-32(V).

Provide decoy system such as Mk 53 NULKA Decoy Launching System
Sea-Force Presentation Outline

Introduction
Requirements & Alternatives
Hull
Flight Deck
Propulsion
Electrical
Logistics
Combat Systems
Total Ship Evaluation
Conclusions
Total Ship Evaluation Areas

- Operational Functionality and Flexibility
- Modularity
- Survivability
- Manning
- Damage Control
- Cost
Operational Functionality/Flexibility

• Access/Reroute/Resupply Methods
 - Well Deck
 - Flight Deck
 - LCU Decks
 - Crane

• Layout
 • Berthing for GCE near Med/Hospital
 • Joint Support spaces co-located:
 • CO/Flag/CS/C4I and Bridge
Operational Functionality/Flexibility

• Ports of Access
 • Norfolk
 • San Diego
 • Everett
 • Rota

• Ports Requiring Access
 • Blount Island
Modularity

- Berthing Modules
 - 80 total
 - 30 Navy Ofcr/Enl
 - 50 USMC Ofcr/Enl
- Medical/Third echelon afloat care
 - 500 bed hospital
 - 6 operating rooms
 - 1 pharmacy.
Modularity

• Space Conversion from Combatant to Supply Configuration
 • C4I/CS/Weapons
 • Retain SEARAM, DAR, SPS-73, Comms, Flight Deck control, and Countermeasures
 • Total Converted Volume – 201,000 ft³
 • Berthing – All USMC and a percentage of Navy
 • Total Converted Volume – 1,540,000 ft³
 • Hospital/Medical – 219,000 ft³
• Available for containers/pallets/ammunition – ~ 5.7 million ft³
 • Includes Half the Hangar, Vehicle Decks, Warehouse
Supply Configuration

• Weight limited vice volume limited design:
 • More room for containers than weight allowed
 • Allows for 25 days of sustainment load

• Areas Reduced–
 • Maintenance (IMA), Food Preparation, Aviation, Admin, Flight Deck, and Engineering
Survivability

• Signature Reduction
 • Exhausts expended between hulls and water misted
 • Carbon Composite covering steel hull structure
 • Radar absorbent paint
• Redundant systems/Distributed C4I
 • Elevator
 • Combat Systems Weapons and Sensors
• CBR Protective Measures
Manning

• Manning levels determined based on
 • Watch Stations - 50
 • Maintenance - 146
 • Logistics Operations - 242
Manning - Summary

• Manning reduction – Combat Variant
 • 35% (based on LHD)
 • 50% (based on displacement of US Warship)
• Total Ship Manning (Combat Ship) - 724
 • 51 Officers, 41 CPOs and 632 Enlisted
• Total Ship Manning (Supply Ship) – 145
 • Civilian and Military Mix
 • 30 Civilians, 115 Military
Low Maintenance Design

• Conditioned Based Maintenance
• Integrated Electric Drive
• Electrical Distribution System - Power Electronic Building Blocks
• SWAN
 • Automated Identification Technology
Damage Control

• Integrated into the shipboard SWAN
 • Advance Real-Time Sensing
 • Pre-emptive ("flinch") capability
• Intelligent distributed control architecture – robust DC-ARM Supervisory Control System
 • Display sensory information
 • Isolate/recover zones as a result of attack
• Optimized the distribution and separation of redundant vital systems and control stations
Fire Suppression Systems Onboard

<table>
<thead>
<tr>
<th>Compartment</th>
<th>FM 200</th>
<th>CO₂</th>
<th>Water Mist</th>
<th>AFFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery spaces</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Engine enclosures</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Magazine areas</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>X</td>
</tr>
<tr>
<td>Electronics equipment rooms</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hangar</td>
<td>--</td>
<td>--</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vehicle Deck</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Well Deck</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Flight deck</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>X</td>
</tr>
<tr>
<td>CIC</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Bridge</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Accommodations</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Kitchens & Galley</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Offices</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Passageways</td>
<td>X</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Paint lockers</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Pump rooms</td>
<td>--</td>
<td>X</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
The Cost Factor

- Total Acquisition Cost Estimate
 - $3.5 Billion
 - $1.32 Material
 - $1.66 Labor
- Total System Cost Estimate
 - $5.8 Billion
- Cost Breakdown by Percent of Total Cost:
 - Hull – 10% of Material Cost
 - Propulsion/Electrical – 17% of Material Cost
 - Combat Systems – 27.5% of Material Cost
 - Air Wing – 28.7% of Total System Cost
Areas Requiring Further Analysis

• LCU loading and storage methods.
• Conversion to JCC ship.
• Implementation of a break water area between the main and side hulls.
Conclusions

• 2nd Iteration Considerations
 • Port Accessibility.
 • Selective offload of vehicles made more efficient.
 • Further analysis of supply variant loading.
Conclusions

- Key enabler to successful implementation of sea basing concept.
 - Large flight deck to support STOM.
 - Large internal volume for logistics support and selective offload.
 - Supply configured variant capable of supporting troops ashore without transfer to ships in the sea base.
 - Capable of force reconstitution.