

Self Defense Test Ship-Replacement (SDTS-R)

Analysis of Alternatives

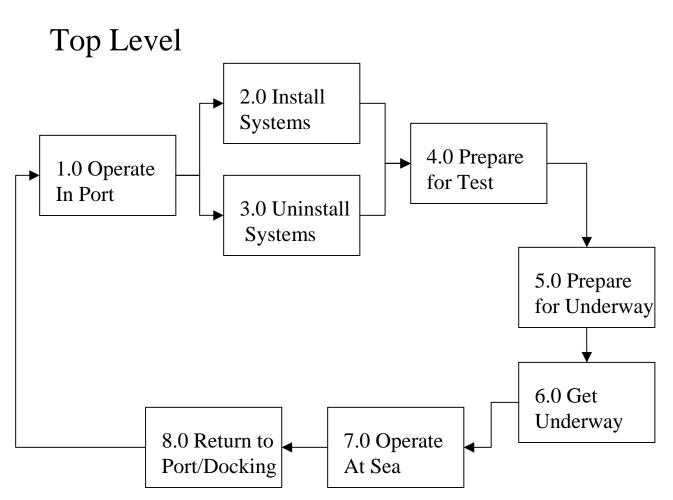
Ioannis Farsaris, Philip Malone, David Ruley, David Wickersham, Nathan York

Total Ship Systems Engineering United States Naval Postgraduate School 15 September 1999

Design Objective

Convert a SPRUANCE-class destroyer into the Self Defense Test Ship-Replacement (SDTS-R) to conduct at sea evaluation of ship self defense weapons and sensors.

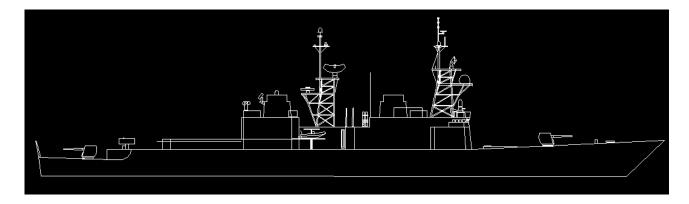
SYSTEMS ENGINEERING PROCESS


- PROCESS INPUT
 - CUSTOMER NEEDS PORT HUENEME MISSION NEEDS
- REQUIREMENTS ANALYSIS
 - TEAM/FACULTY DEVELOPED ORD
- FUNCTIONAL ANALYSIS
 - FUNCTIONAL FLOW DIAGRAM
- SYNTHESIS
 - DEFINITION OF:
 - BASE LINE CS SUITE
 - SSDS Mk II, LPD-17 Version
 - BASELINE ENGINEERING CONFIGURATION
 - PERSONNEL
 ACCOMMODATIONS
 - ARRANGEMENT ALTERNATIVES

Functional Flow Diagrams

SDTS-R Required Components

- SSDS Mk 2 (LPD-17)
 - SPS-48, SPS-73, SPQ-9, SLQ-32
 - RNSSM,CIWS, RAM
- SPS-49
- Camera Mount
- Flight Deck
- 5 in/54 cal Gun
- HM&E Test Engineroom
- Accommodation for:
 - Crew of 150 including 12 women
 - 12 Day Endurance
- All Electric Services
- Tow Barge
- Remote Control System and Monitoring


Analysis of Alternatives

Design "Givens"

- USS O'BRIEN (DD 975) is prospective hull.
- Plenty of space for the required systems.
- Excess electrical power and services.
- Same for all alternatives:
 - Engineering Plant
 - Remote Control System
 - Messing and Berthing Arrangements

Alternatives Preview

• A: Minimum Change

- Least cost
- Port hemisphere engagement only

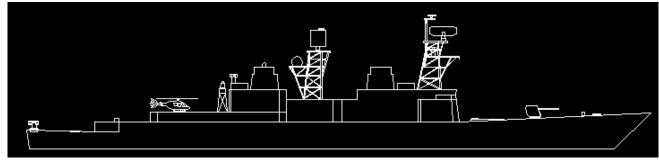
• B: Improved

- Aft hemisphere engagement (Objective)
- Lower RCS
- Small room for future growth

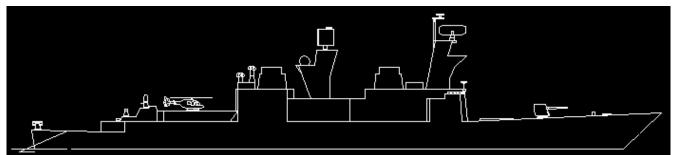
• C: Optimized

- Aft hemisphere engagement
- Even lower RCS
- Forward flight deck
- More room for future growth

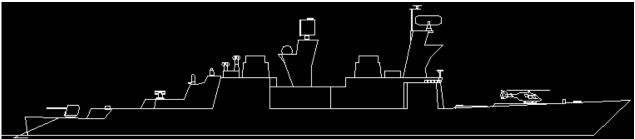
• D: Ideal


- Minimal RCS and IR signature
- Highest cost

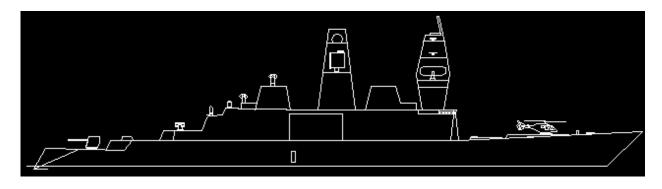
Alternative A: Minimum Change


- ADVANTAGES
 - Least expense
 - Uses existing weapon and sensor foundations
 - Keeps flight deck aft and relatively free of clutter
 - Leaves missile deck and fantail open
- DISADVANTAGES
 - Large RCS
 - Barge ops requires tugs
 - Limited to port side engagements

Alternative B: Improved Version


- ADVANTAGES
 - Reduced RCS
 - 180 degree Field of View
 - Barge Ramp
 - French doors
 - Full use of hangar and flight deck
 - MT 52 deck space available
 - Low cost
- DISADVANTAGES
 - Limited Camera FOV
 - Missile Deck occupied
 - Restricted angle of approach for helo
 - Reducing range for CIWS
 - Still 83% of RCS of Decatur

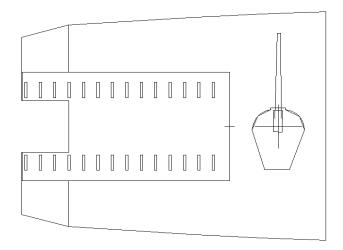
Alternative C: Optimized Version


- ADVANTAGES
 - Greatly reduced RCS
 - Barge Ramp
 - French Doors
 - Forward Flight Deck
- DISADVANTAGES
 - Expense, Structural Modifications

Alternative D: Ideal Version

- ADVANTAGES
 - Best RCS:
 - AEM/S (LPD-17 version and Radford version)
 - Advanced stacks (IR reduction)
 - Reduced bridge wings
- DISADVANTAGES
 - Greatest expense

Two Time and Cost Saving Features


- Barge Ramp
- Enclosed Accommodation Ladders

Barge Ramp

- Eliminates tug services
- Savings of \$18,000 (min) per live fire test
- Barge is easily transportable to any range

Enclosed

Accommodation Ladder

"the French Doors"

Objective:

- Improve safety and ease of personnel transfers to/from small boats such as range craft, pilot boats and tugs.
- Reduce RCS.

Modification:

- Two 10'x10' cofferdams are constructed aft of Fr 382, one port and one stbd.
- Cofferdam extends from the main deck down to the second platform. (WL is 3' above 2nd Platform deck)
- Merchant-type, hull conformal WT doors are fitted for each platform, the lower at 3' above the waterline, the upper platform at 8' above the waterline.
- Note: This configuration is currently in use on the new French Navy Lafayette-class frigates, primarily as a RCS reduction element.

Comparison of Alternatives

Weapons and Sensors

	Alternative A	Alternative B	Alternative C	Alternative D
		Weapons and Se	neors	
CIWS	CIWS not moved. Located	CIWS Located on Missile	CIWS on steps.	CIWS on steps.
	04 Level Port Side.	Deck Centerline.		
	Missiles nust come from	Helicopter met approach		
	Rart Side	atanangle. (typical)		
Canera	Canera mourt Forward	Camera mounted on	Canera mount on step	Canera mount on step
Mart	Rart Correr of Flight	missile deck aft and	forward and above CIWS.	forward and above CIWS.
	Deck. Raised Platform.	below CIWS.		
	FOV to Part only.			
	Blocks 5' of hangar			
	dar.			
Flight	Flight Deck Aft.	Flight Deck Aft.	Flight Deck Forward.	Flight Deck Forward.
Deck	Keep MT 51	Keep MT 51.	Keep MT 52.	Keep MT 52.
Mk 91	Mk 91 Director Marted	Mk 91 Directors in	Mk 91 Directors in	Mk 91 Directors in
Directors	Port Side of Fiel Mest.	tandem at aft intakes.	tandem at aft intakes.	tandem at aft intakes.
	FOV to Part Only.			
RAM	RAM on Aft Port Correr	RAM on Fantail in MT 52	RAM on Flight deck aft	RAM on Flight deck aft
	of Fantail. Krown	site.	of steps.	of steps.
	installation location.			
VLS	Maintain one VLS module	Maintain one VLS Module	Maintain two VLS Modules	Maintain two VLS Modules
Missile	Missile Deck available	Missile Deck vavailable	Missile Deck available	Missile Deck available
Deck	for future growth.	for future growth.	for future growth.	for future growth.

Comparison of Alternatives

Radar Cross Section

	Alternative A	Alternative B	AlternativeC	Alternative D					
	Reder Cross Section								
Mast	Minimized mest.	Minimized Mast.	Minimized Mest.	ÆM/S					
		RAM Pareling	RAM Pareling						
Clutter	Renove Clutter Aft	Renove Clutter on Aft	Renove Clutter on Aft	Renove Clutter on Aft					
edition	Aspect and Port Aspects only.	Aquets.	Aspects.	Aspects.					
RAM	No RAM coating	RAM Catting on	RAM Cating on	RAM Catting on					
		Sperstructure	Sperstructure	Sperstructure					
Harpoon	No screening	No screening	RAM screen Harpoon Deck	RAM screen Harpoon Deck					
Maindeck			Arechoic Costing 10'	Arechoic Costing 10'					
RS			belownaindeck entire	below maindedk entire					
Redution			length of ship.	length of ship.					
Sper-		False sloped	False sloped	Reduced Bridge Wings.					
structure		sperstructure forward	sperstructure forward	Sloped forward					
		of midships break	of midships breek	sperstructure					
Below		Main deck weatherdeck	Main deck weatherdeck	Hangar nanowed and					
Hangaron		below flight deck	below flight deck	sloped.					
Ween Deck		pæreled	pareled						
Boat Deck	Rart boat deck	RAM Blanket over Boat's	Boat Deck Awning	Boat Deck Awning					
RS	streamlined. Use SIBD	Chane							
Redution	boat deck only.								
NSSML	Renove Mk 29 NSSML.	Renove Mk 29 NSSML	Renove Mk 29 NBSML	Remove Mk 29 NSSML,					
MT 52	MT 52 renoved	MT 52 renoved	MT 52 retained	MT 52 retained					

Comparison of Alternatives Personnel and Habitability

	Alternative A	Alternative B	Alternative C	Alternative D			
	Personel and Habitability						
Boat	Boat Davit maintained on	Boat Davit has awning	Boat Davit behind Garage	Boat Davit behind Garage			
	Starboard Side		Dar	Dar			
Personel	Pennament Ladder on	Personel egress via	Personel egress via	Personel egress via			
Transfer	Starboard Side.	French Door	French Door	French Door			
Barge	Standard Towneens.	Barge Ranp	Barge Ramp	Barge Ranp			

Requirements Summary

Requirements	Alt. A	Alt. B	Alt. C	Alt. D
15 years life				
15 kts sust.speed	Т	<u> </u>	Т	Т
12 days endurance				
Operational @ S.S. 4				
Objective S.S. 6				
Remote Operability				
3 hours				
8 hours				
COLREGS				
Installed video recorders for:				
S & W				
navigation				
Instelled data recorders for: S & W				
navigation Area & volume for				
	т			
temporary combat systems &				0
sensors Area & volume for				
	т			
temporary computer/electronics				0
equipment Support for:				
AIEWS	т			
BGIO/BGI	Т			
MFR	Т			
RAM HAS	Т			
ESSM/VLS	Т			
AN/SPQ-9B	Т			
IRST	т			
ATWCS	T			
NSFS	T			
	Т			
SATCOM				
DD 21 Tech Projects	Т	T		0
LPD 17 Systems	Т	Т	T	Т

Requirements Summary Continued

Support for SSDS Mk II	Т			
(LPD-17 plus SPS-49)				
Provide gyro & stable element				
Utility/range boat access	Т			
Ability to launch & recover		Т	Т	Т
Jet Ranger & Long Ranger Helo				
Rescue boat launcing				
Towing capability for barge	Т			
RCS of SDTS-R*	113%	83%	69%	56%
Support for 150 personnel			\checkmark	
for 12 days				
Berthing for 12 females				
Crew members (HM&E) (CS)	Т	Т	T	Т
COTS facilities	Т	Т	\checkmark	0
DC systems & equiment	Т			0
Remote monitoring of fire		· · · · · · · · · · · · · · · · · · ·		
sencitive areas with fire	\checkmark		\checkmark	
suppression systems				
Remotely power secure ability				0
Ship stability within DD963 limits				
Corrosion suppression				0
under Navy standards				
Battle group interoperability	Т	Т		0
Adecuate draft for NCBC				
of Port Huaneme				
All electric ship				
One engineroom for HM&E tests				
Environmental friendly				
Cost	0			Т
	g threshold			
	eding threshold			
O achievin	ig objective			

Field of View

Sensor	FOV	Alt. A	Alt. B	Alt. C	Alt. D
RAM	Depress to Min Range	Y	Y	Y	Y
	Elevate 75	Y	Y	Y	Y
	090R to 270R	Y	Y	Y	Y
CIWS	Depress to Min Range	Y	Y	Y	Y
	Elevate 75	Y	Y	Y	Y
	090R to 270R	NO	Y	Y	Y
Camera	Depress to Min Range	Y	NO	Y	Y
	Elevate 75	Y	Y	Y	Y
	090R to 270R	Y	NO	Y	Y
Mk 91 #1	Depress to Min Range	Y	Y	Y	Y
	Elevate 75	Y	Y	Y	Y
	090R to 270R	NO	Y	Y	Y
Mk 91 #2	Depress to Min Range	Y	Y	Y	Y
	Elevate 75	Y	Y	Y	Y
	090R to 270R	Y	Y	Y	Y
SPS 48	Depress to Min Range	Y	Y	Y	Y
	Elevate 75	Y	Y	Y	Y
	090R to 270R	Y	Y	Y	Y
SPS 49	Depress to Min Range	Y	Y	Y	Y
	Elevate 75	Y	Y	Y	Y
	090R to 270R	Y	Y	Y	Y
SPQ 9	Depress to Min Range	Y	Y	Y	Y
	Elevate 75	Y	Y	Y	Y
	090R to 270R	Y	Y	Y	Y

Radar Cross Section

- Soviet Frigate "Kola"
 - Displacement 1900 LT
 - RCS approx. 12000 m²
- ex-Decatur
 - Displacement 4100 LT
 - Surface Area 900 m²
 - RCS approx. 24000 m²
- 50% of RCS from Hull/Superstructure.
 - -12000 m^2
 - Directivity Index for Hull and Superstructure is approximately 10.

RCS (Con't)

- Soviet Destroyer
 - Displacement 7000 LT
 - RCS approx 30000 m²
- SPRUANCE Class Destroyer
 - Displacement 7400 LT
 - Surface Area 1500 m²
 - RCS approx 30000 m²
- 50% of RCS from Hull/Superstructure.
 - -15000 m^2
- 50% from:
 - Weapons: 5000 m². Directivity=100
 - Sensors: 5000 m². Directivity=100
 - Masts: 5000 m²

RCS Calculations: Alternative C

Hull and Superstructure Shaping

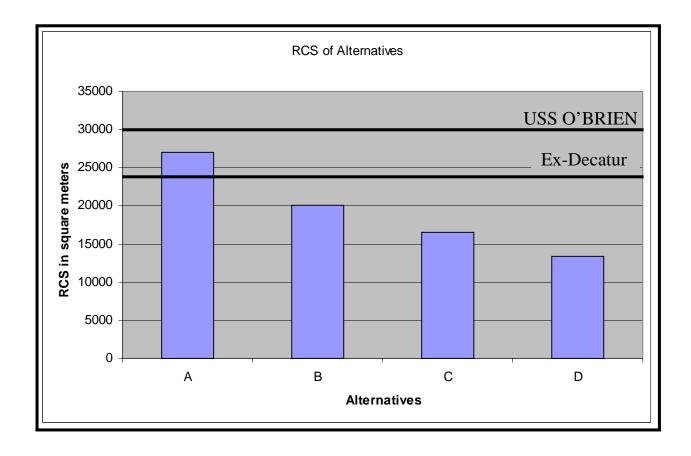
15000 Geome	tric			
1	Constructio	n of Steps		Surface Area=42 sq meters. Smooth surfaces= no Directivity Factor.
				sloped approx 10 degrees, assume sidelobe is 1% of mainbeam reflection
-210	Steps hide I	Hangar Surf	aces	42 sq meters x 10 Directivity Factor. X.5 for Avg Projected Area
-750	Remove clu	tter from sk	in of ship	Multitude of tiny di/tri-hedrals: 5% of total
-400	Install RAM	Screen over	r Harpoon deck.	8'x50'=400sq ft=40 sq meter. X10 directivity factor.
-750	Install awnir	ng over boat	deck	16'x50'=800sq ft=75sq meter. x10 directivity factor.
				RAM Blanket 80% effective.
-4000	RAM coating	g (PCMS) oi	n superstructure	Superstructure is 1/3 of total surface=5000 sq meters of RCS.
				PCMS is eliminates 80% of reflection.
-198	False, slope	ed forward s	uperstructure	Area=100 square meters, PCMS so RCS=200 sq meters
				sloped approx 10 degrees, assume sidelobe is 1% of mainbeam reflection
-3840	Anechoic Pa	anelling belo	w maindeck	10'x520'=5200sq ft=480 sq meter. x10 directivity factor. 80% effective.
-400	Weax deck	p-way belov	v hangar enclosed.	Area=40 square meters, x10 for Directivity Factor.
120	Barge Ram	p Addition		8mx3m waterline in wet deck=24 sq meter. X10 Directivity Factor.
				x.5 Projected Average Area.
10218 Net Cha	ango			4782 As Modified Geometric Contribution

RCS Calculations: Alternative C

Weapons/Sensors/Mast Shaping

15000	S/MW											
	0	CIWS Move	ed but same	RCS Contrib	ution							
	40	Addition of (Camera Mou						(10 for dihed	ral effects.		
	100	Addition of (Camera			Camera area =1. X100 for Sensor Directivity						
	-1250	Remove Ex	cess mast			Entire mast is 1/3 of S/MW=5000 sq meters. Remove about 1/4 of volume					ne	
	-3000	RAM Panel	Mast	3750 sq meter of mast remain. RAM Panelling eliminated 80% of reflection					n			
	600 Addition of RAM					7x10ft launcher and pedestal. Area is 6 sq meters. X100 for Directivity.						
	-600	Remove TAS and SPS-40				TAS area=2 sq m. 40 area=4 sq m. x100 for reflective shaping.						
	2200	Addition of S	SPS-48 and	49		SPS-48 area=10 sq m. 49 area=12 sq m. x100 for reflective shaping.						
	-1600	Remove M	(29 NSSML			16 sq m. X100 for Directivity Factor						
	300	Addition of I	Vk91 Directo	Director Approx 1 sq meter size+ pedestal, smooth surfaces, x100 Directivity Fact					tor			
-3210	Net Cha	Change				11790 As Modified S/M/W Contribution						

11790	S/M/W Cont	ribuition			
16572	Buick Altern	ative Estima	ted Total RC	S	
	55.24	Percent of C	D'BRIEN Ori	ginal RCS	
	69.05	Percent of e	x-Decatur R	CS	



Radar Cross Section Summary

Alternative	А	В	С	D
RCS	27066	20000	16572	13381
% O'BRIEN	90.2	66.7	55.2	44.6
% ex-Decatur	112.8	83.3	69.1	55.8

Stability

- Utilized asset model (figures 1 and 2)
- ASSUMPTIONS Baseline ship is DD-963 with following modifications:
 - 1) SPS-48 RADAR
 - 2) CIWS camera mount
 - 3) Reduced RCS Panels on masts (GRP panels)
 - 4) Flt Dk weapons platforms (steel frame with GRP panels)
 - 5) RAM launcher aft
 - 6) Reduced RCS enhancements (RAM screens/GRP)
 - 7) No VLS weapons
 - 8) No fwd CIWS
- RESULTS
 - 0.18 ft increase in KG
 - slight decrease in righting arm at large heel angles
- CONCLUSION DD-963 hull has ample stability for SDTS-R conversion.

Summary

- Four Alternatives presented
 - Range of Signature Reduction
 - Weapons and Sensors Placement
 - Flight Deck Position
- Barge Ramp and French Doors
- Worst Case Stability Analysis
- Cost not specifically evaluated