Kinetic Models for Waves in Random Media & Related Inverse Problems

Guillaume Bal
Columbia University
Motivations

- Imaging in Highly Heterogeneous Media
 - Statistical Properties of Random Media
 - Imaging of buried Inclusions
Probing heterogeneous media

Turbulent Atmosphere

Source

Detector
Detecting Buried Inclusions
Imaging in Known Media

- When heterogeneous medium is known: Use **Time Reversal**:
 - Time reversed waves back-propagate to their original location.
 - Inclusion may be seen as secondary source.

- This is the rationale for standard methods such as Kirchhoff migration leading to resolution of order $\lambda/2$.
Imaging in Unknown Media

When the (random) medium is *not known*:

- Model random medium by a *homogeneous medium* with *small* random fluctuations.

- **Model** wave propagation *macroscopically*:

 What we are interested in today.
Homogeneous medium: Kirchhoff migration

Weakly Scattering

Strongly Scattering
High frequency waves in Random Media

- Macroscopic model: need an asymptotic regime. Here **high frequency** waves with **highly heterogeneous** media.

- High frequency waves: **Liouville** equation for the wave **energy density** $a(t, x, k)$:

$$\frac{\partial a}{\partial t} + \nabla_k \omega \cdot \nabla_x a - \nabla_x \omega \cdot \nabla_k a = 0$$

$$\omega(x, k) = c(x)|k|$$
Radiative Transfer Equation

Regime: fluctuations too large to be ignored. Perturbations account for SCATTERING.

\[
\frac{\partial a}{\partial t} + \nabla_k \omega \cdot \nabla_x a - \nabla_x \omega \cdot \nabla_k a = \frac{\pi \omega^2(x, k)}{2(2\pi)^d} \times \int_{\mathbb{R}^d} \hat{R}(x, p - k) \left(a(p) - a(k) \right) \delta \left(\omega(x, p) - \omega(x, k) \right) dp
\]

\(\hat{R}(x, k) \): Power Spectrum of velocity fluctuations
Regimes of Wave propagation

- **Weak Coupling** regime: \(\delta c_\varepsilon^2(x) = \sqrt{\varepsilon} \delta c^2 \left(\frac{x}{\varepsilon} \right) \)
 \[
 \hat{R}(k) \delta(k + p) = c_d \mathbb{E}\{\delta c^2(k) \delta c^2(p)\}
 \]

- **Low Density** regime: \(\hat{R}_0 = c_d \mathbb{E}\{\tau^2\} n_0 \)
 \[
 \delta c_\varepsilon^2(x) = \varepsilon \frac{1 - (\gamma + \beta)}{2} \sum_j \tau_j \delta c^2 \left(\frac{x}{\varepsilon} - \frac{x_\varepsilon^j}{\varepsilon \beta} \right)
 \]
 \(x_\varepsilon^j \) Poisson P.P. with density \(\varepsilon^{(\gamma-1)d} n_0 \)

- **For larger fluctuations**, waves may localize.
Inverse Problem

- Imaging the random media and/or buried inclusions becomes an inverse transport problem:

\[
\frac{\partial a}{\partial t} + \nabla_k \omega \cdot \nabla_x a - \nabla_x \omega \cdot \nabla_k a = \frac{\pi \omega^2(x, k)}{2(2\pi)^d} \times \int_{\mathbb{R}^d} \hat{R}(x, p - k) \left(a(p) - a(k) \right) \delta \left(\omega(x, p) - \omega(x, k) \right)
\]

\[
\omega(x, k) = c(x) |k|
\]

- How stable are available measurements?
Statistical Stability
Result: Under appropriate assumptions, the energy density converges, as the wavelength goes to 0, weakly and in probability, to its deterministic limit.

Weakly means we have to average energy over a sufficiently large region compared to the wavelength.

Some results on speed of convergence.

Result shows that the RTE indeed provides a model suitable for inversion: Measurements are fairly independent of the unknown realization of the random medium.
Inverse Waves v. Inverse Transport

Kirchhoff (inverse wave) reconstruction versus Inverse Transport reconstruction
Inverse Waves v. Inverse Transport

Kirchhoff (inverse wave) reconstruction versus Inverse Transport reconstruction
Inverse Waves v. Inverse Transport

Kirchhoff (inverse wave) reconstruction versus Inverse Transport reconstruction
Inverse Waves v. Inverse Transport

Kirchhoff (inverse wave) reconstruction versus Inverse Transport reconstruction
Random medium and buried inclusions are modeled as constitutive parameters in a transport equation, which models the (macroscopic) wave energy density.

In the high frequency limit, measurements over sufficiently large detectors are (approximately) statistically stable.
Inverse Transport and ill-posedness

- With **spatially resolved** measurements, the inverse transport problem is **severely ill-posed**: Noise is highly amplified which results in **poor resolution**.

- As we saw, measurements are **statistically stable** if averaged over a sufficiently large domain.

- Important to find imaging scenarios that are as much immune to **statistical noise** as possible (High SNR).
Energies and Correlations

- RTE models more general \textit{field-field correlations} (energies when the fields are the same).

\[C(t, x) = \mathbb{E}\{u_1(t, x)u_2^*(t, x)\}. \]

- Applications: monitor \textit{turbulent region} as a function of time; image time-varying buried inclusions (field 1 with inclusion; 2 without).
Generalized RTE for Correlations

Correlation Function

\[C(t, x) = \int_{\mathbb{R}^d} a(t, x, k) \, dk \]

\[
\frac{\partial a}{\partial t} + c_0 \hat{k} \cdot \nabla a + (\Sigma(k) + i \Pi(k)) a
\]

\[
= \frac{\pi \omega^2_+(k)}{2(2\pi)^d} \int_{\mathbb{R}^d} \hat{R}_{12}^{12}(k - q) a(q) \delta\left(\omega_+(q) - \omega_+(k)\right) \, dq
\]

\[
\Sigma(k) = \frac{\pi \omega^2_+(k)}{2(2\pi)^d} \int_{\mathbb{R}^d} \frac{\hat{R}_{11}^{11} + \hat{R}_{22}^{22}}{2} (k - q) \delta\left(\omega_+(q) - \omega_+(k)\right) \, dq
\]

\[
i \Pi(k) = \frac{i \pi \sum_{j=\pm} \phantom{\int_{\mathbb{R}^d}} \not{p.v.} \int_{\mathbb{R}^d} \left(\hat{R}_{11}^{11} - \hat{R}_{22}^{22} \right)(k - q) \frac{\omega_j(k) \omega_+(q)}{\omega_j(q) - \omega_+(k)} \, dq
\]
Imaging Scenarios

- **Scenario 1**: Image from *Direct Energy* Measurements (with inclusion)

- **Scenario 2**: Image from *Energy* Measurements *With and Without* Inclusion

- **Scenario 3**: Image from *Wave Field* Measurements *With and Without* Inclusion
Direct versus Differential Measurements

- Scenario 1 suffers from large statistical instability caused by our lack of knowledge of the random medium.

- Scenarios 2&3 suffer from statistical instability proportional to changes in the differential measurements.
Direct Measurements

- Statistical Instability from Object
- Statistical Instability from Medium
Differential Measurements
Correlations vanish at the inclusion’s boundary

Incompatible

Dispersion Relations
Energies versus Correlations

- Comparison of Scenarios 2&3 in Highly Scattering regime:

In highly scattering media (in the diffusive regime), the perturbation in the energy caused by a void inclusion is given by

\[\delta \mathcal{E}(t, x) = d\pi D_0 R^d \int_0^t \nabla_x u_0(t - s, x_b) \cdot \nabla_{x_b} G(s, x, x_b) ds. \]

Here \(d \) is dimension and \(G(s, x, x_b) \) the background Green's function.

The perturbation of the two-field correlation is given by

\[\delta C(t, x) = -4\pi R \int_0^t u_0(t - s, x_b) \frac{G(s, x, x_b)}{s} ds + o(R), \quad d = 3 \]

\[\delta C(t, x) = \frac{2\pi}{\ln R} \int_0^t u_0(t - s, x_b) \frac{G(s, x, x_b)}{s} ds + o\left(\frac{1}{\ln R}\right), \quad d = 2. \]

- In moderately scattering regime, both are of order \(R^{d-1} \).
Numerical Simulations

- Waves solved by Finite Differences
- Transport solved by Monte Carlo
Typical Wave field
Effect of Void inclusions

- **Transport theory** accurately predicts the influence of an inclusion on the energy measurement.
Noise v. detector size

Wavelength $\lambda = 1$, mean free path ≈ 40, isotropic cross section.

Display of $S(t) = \frac{\sigma\{\mathcal{E}^\varepsilon\}(t)}{\mathbb{E}\{\mathcal{E}^\varepsilon\}(t)}$ for 20 realizations.

Relative standard deviation for several detectors

Naval Postgraduate School

DRCSI Seminar
Correlation fluctuations (blue) versus energy fluctuations (red) in weakly (left) and strongly (right) scattering media.
Reconstructions from Energies

Naval Postgraduate School

DRCSI Seminar
Reconstructions from Correlations

Naval Postgraduate School

DRCSI Seminar
Inverse monochromatic transport

- Monochromatic waves
- **Foldy Lax** to model **point scatterers** and solve for wave fields
- Forward and inverse transport problems solved by **Monte Carlo** method
- Random medium parameterized by **mean free path**:

$$l_{2D}^*(k) \approx \frac{1}{\tau^2 k^3}$$
Weak Scattering reconstructions

- Kirchhoff (middle) versus Transport (right) reconstructions
Strong Scattering reconstructions

- **Kirchhoff** (middle) versus **Transport** (right) reconstructions
Reconstruction from Direct Measurements

- Inclusion of radius $R=30$
Reconstruction from Differential Measurements

- Inclusion of radius $R=10$
Hidden Inclusions (by known blocker)

- Reconstruction of inclusions in the absence of line of sight (coherent) measurements.
Duke U. experimental Setup

Antenna

Target
Reconstructions from Experimental Data

- Reconstructions based on differential data (Scenario 2).
- 10 GHz data. Medium is 2.5 mean free paths thick.
Reconstruction of voids

- Reconstructions based on differential data (Scenario 2).
- 10 GHz data. Medium is 2.5 mean free paths thick.
Conclusions

- **Transport equations** offer an accurate *macroscopic* description of wave propagation in unknown heterogeneous media.

- **Energy density** and the **field-field correlations** are asymptotically *statistically stable*.

- **Inverse transport** a good model to *reconstruct* statistical properties of random media and *image* buried inclusions.
Acknowledgment

- Work funded by ONR 01-04; DARPA-ONR 04-09; AFOSR 10-15; NSF 01-present.

References: